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Abstract. This research was conducted to optimize energy consumption forecasting in the commune of 

Boma, in the Democratic Republic of Congo, in the face of persistent imbalances between energy 
production and demand. The main objective of the study was to assess local energy needs in order to 
support the economic and social development of the region. To achieve this objective, a methodology 
integrating quantitative and qualitative techniques was adopted. Data were collected through surveys 
conducted among residential, semi-industrial, and tertiary consumers, as well as demographic information 
provided by the town hall. In parallel, machine learning techniques were employed to predict energy 
consumption, with the Particle Swarm Optimization (PSO) algorithm used to optimize forecasts. The 
forecasting model was accompanied by statistical analyses, including the Pearson correlation coefficient 
and the Student t-test, to validate the results. The analysis revealed a very high correlation between actual 
and predicted values, with a coefficient reaching 0.999, which demonstrates high model accuracy. 
However, biases were observed, including a tendency to overestimate energy consumption, highlighting 
the importance of reliable data collection to improve forecast accuracy. In conclusion, the PSO algorithm 
has proven to be an effective tool for energy demand management, although adjustments are necessary 
to optimize the results. The lessons learned highlight the need for a thorough understanding of consumption 
behaviors and regular data updates to adapt forecasts to future developments. 
 

Keywords: Optimization, energy forecasting, PSO algorithm, machine learning techniques, 
energy management 

Introduction 

Electricity is a fundamental element for a nation's economic and social development. Its 
continuous production is of crucial importance, as storing excess power is not always a viable 
option. This reality creates imbalances between production and demand, leading to significant 
economic losses and hampering growth. For example, when production exceeds demand, 
unnecessary costs are generated. Conversely, insufficient production harms consumers and can 
reduce productivity. These dynamics are clearly illustrated in previous studies such as [1], [2]. 
The challenges of energy forecasting are complex and involve several uncertainties, including 
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population growth, technological development, economic performance, weather conditions, and 
consumer behavior. In developing countries, these challenges are exacerbated by the lack of 
reliable data, political influences, and demand volatility resulting from economic instability.  
Highlights the importance of these factors in the context of energy demand [3]. In this context, 
this study addresses a single primary research problem: forecasting energy consumption in the 
commune of Boma, in the Democratic Republic of Congo. This choice stems from the crucial 
importance of energy for local development, as well as the need for a thorough understanding of 
the population's energy needs. A more accurate forecast could lead to optimized energy 
production and reduced economic losses. The work of Gad [4] highlights the importance of such 
an approach. The study identifies several major problems related to this issue. First, there is an 
imbalance between production and consumption, with the National Electricity Company (SNEL) 
sometimes unable to produce enough to meet needs. Furthermore, the lack of reliable data 
complicates decision-making, which often relies on incomplete information. Fluctuations in 
demand further exacerbate these challenges, making energy planning more complex, as 
indicated by [5], [6]. 

To address these challenges, the study aims to estimate the energy needs of the Boma 
municipality. This will involve collecting qualitative and quantitative data on SNEL's infrastructure, 
as well as low-voltage data for residential, commercial, and semi-industrial consumers in 2023. 
An energy consumption forecasting model will be developed, focusing on the districts of Nzadi, 
Kalamu, and Kabondo. The Particle Swarm Optimization (PSO) algorithm will be used to ensure 
accurate forecasts through 2053, using machine learning techniques implemented in Python via 
Anaconda to predict demand. This will be accompanied by statistical analyses to validate these 
forecasts using Pearson correlation tests and Student's t-tests for means, using Python Anaconda 
[7], [8], [9]. 

The study will focus specifically on the Boma municipality, taking into account the aforementioned 
districts. To contextualize this research, several previous studies were analyzed. For example, 
[10] proposed modeling approaches for energy consumption forecasting, while [11] examined the 
impact of emerging technologies on energy demand. Other studies, such as those by [12], [13], 
have also provided valuable insights into energy consumption behaviors and energy production 
in developing countries. Studying energy forecasting in Boma is essential for optimizing resource 
use and supporting local development. By applying advanced methods and statistical analyses, 
this research aims to offer concrete solutions to current challenges, contributing to a more stable 
and sustainable energy future for the municipality. 

Energy optimization is essential for maximizing the efficiency of energy production and 
consumption. It involves a variety of approaches, such as demand modeling, analyzing 
consumption patterns, and forecasting future needs. Optimization methods are particularly crucial 
in energy systems, where accurate planning can reduce costs and improve sustainability [1], [4], 
[14]. The PSO algorithm, inspired by the social behavior of birds and fish, was developed to solve 
complex problems by simulating the movement of particles in a search space [15]. Each particle 
represents a potential solution, and the algorithm uses the interaction between these particles to 
converge to an optimal solution. PSO is particularly appreciated for its simplicity and efficiency, 
but it also presents challenges, particularly regarding convergence to local optima and 
convergence speed in high-dimensional search spaces [4]. 
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Energy forecasting models, whether based on historical data or advanced techniques such as 
PSO and machine learning, are essential for anticipating energy needs. These models help 
optimize energy production and minimize economic losses, which is particularly relevant in the 
context of decentralized energy systems [1]. Statistical analysis, particularly using methods such 
as the Pearson correlation coefficient, is crucial for validating the results of predictive models. 
These tools help assess forecast accuracy and ensure the reliability of the applied algorithms [5], 
[6]. However, various challenges persist in energy forecasting. Uncertainties related to population 
growth, economic conditions, and climate variations complicate the task of forecasters. A 
thorough understanding of these challenges is essential for developing robust models. 
Optimization algorithms, including PSO, can be applied to many aspects of energy management, 
such as supply planning and improving energy efficiency in infrastructure. The collection and 
integration of qualitative and quantitative data are fundamental to the success of these 
optimizations. This includes not only demographic data and consumption habits but also 
infrastructure characteristics [10]. In short, this theory lays the necessary foundation for future 
research, providing a solid conceptual framework for analyzing energy needs in the Boma 
municipality. Integrating machine learning and optimization algorithms such as PSO into the 
forecasting process is crucial to address the shortcomings of existing methods and ensure a more 
reliable approach to energy management in the region. 

Theoretical Background 

Energy optimization is essential to maximize the efficiency of energy production and consumption. 
It involves a variety of approaches, such as demand modeling, analysis of consumption patterns, 
and forecasting future needs. Optimization methods are particularly crucial in energy systems, 
where accurate planning can reduce costs and improve sustainability [1], [4], [14]. The PSO 
algorithm, inspired by the social behavior of birds and fish, was developed to solve complex 
problems by simulating the movement of particles in a search space [16]. Each particle represents 
a potential solution, and the algorithm uses an interaction between these particles to converge to 
an optimal solution. PSO is particularly appreciated for its simplicity and efficiency, but it also 
presents challenges, particularly regarding convergence to local optima and the speed of 
convergence in high-dimensional search spaces [4]. Energy forecasting models, whether based 
on historical data or advanced techniques such as PSO and machine learning, are essential for 
anticipating energy needs. These models help to optimize energy production and minimize 
economic losses, which is particularly relevant in the context of decentralized energy systems [1]. 
Statistical analysis, especially through methods such as the Pearson correlation coefficient, is 
crucial to validate the results of predictive models. These tools help to assess the accuracy of 
forecasts and ensure the reliability of the applied algorithms [5], [6]. However, various challenges 
persist in energy forecasting. Uncertainties related to population growth, economic conditions, 
and climate variations complicate the task of forecasters. A thorough understanding of these 
challenges is essential to develop robust models. Optimization algorithms, including PSO, can be 
applied to many aspects of energy management, such as supply planning and improving energy 
efficiency in infrastructure. The collection and integration of qualitative and quantitative data is 
fundamental to the success of these optimizations. This includes not only demographic data and 
consumption habits but also infrastructure characteristics [10]. In sum, this theoretical section 
establishes the necessary foundations for future research, providing a solid conceptual framework 
for the analysis of energy needs in the Boma commune. 
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The study will focus specifically on the municipality of Boma, taking into account the districts 
mentioned above. To contextualize this research, several previous studies were analyzed. For 
example, [10] proposed modeling approaches for forecasting energy consumption, while [11] 
examined the impact of emerging technologies on energy demand. Other studies, such as those 
by Khalil et al. [12] and [13], have also provided valuable insights into energy consumption 
behaviors and energy production in developing countries. 

Studying energy forecasting in Boma is essential for optimizing resource use and supporting local 
development. By applying advanced methods and statistical analyses, this research aims to offer 
concrete solutions to current challenges, contributing to a more stable and sustainable energy 
future for the municipality. 

Energy optimization is essential for maximizing the efficiency of energy production and 
consumption. It involves a variety of approaches, such as demand modeling, consumption pattern 
analysis, and forecasting future needs. Optimization methods are particularly crucial in energy 
systems, where accurate planning can reduce costs and improve sustainability [1], [4], [14]. 

The PSO algorithm, inspired by the social behavior of birds and fish, was developed to solve 
complex problems by simulating the movement of particles in a search space [16]. Each particle 
represents a potential solution, and the algorithm uses the interaction between these particles to 
converge toward an optimal solution. PSO is particularly appreciated for its simplicity and 
efficiency, but it also presents challenges, particularly regarding convergence to local optima and 
convergence speed in high-dimensional search spaces [4]. 

Energy forecasting models, whether based on historical data or advanced techniques such as 
PSO and machine learning, are essential for anticipating energy needs. These models help 
optimize energy production and minimize economic losses, which is particularly relevant in the 
context of decentralized energy systems [1]. Statistical analysis, particularly using methods such 
as the Pearson correlation coefficient, is crucial for validating the results of predictive models. 
These tools help assess forecast accuracy and ensure the reliability of the applied algorithms [5], 
[6]. 

However, various challenges persist in energy forecasting. Uncertainties related to population 
growth, economic conditions, and climate variations complicate the task of forecasters. A 
thorough understanding of these challenges is essential for developing robust models. 
Optimization algorithms, including PSO, can be applied to many aspects of energy management, 
such as supply planning and improving energy efficiency in infrastructure. The collection and 
integration of qualitative and quantitative data are fundamental to the success of these 
optimizations. This includes not only demographic data and consumption habits but also 
infrastructure characteristics [10]. 

In summary, this theoretical section lays the necessary foundation for future research, providing 
a solid conceptual framework for analyzing energy needs in the Boma municipality. Integrating 
machine learning and optimization algorithms such as PSO into the forecasting process is crucial 
to address the shortcomings of existing methods and ensure a more reliable approach to energy 
management in the region. 
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Materials and Methods 

2.1 Introduction to the Study Setting 

This study was conducted in Boma, Kongo Central Province, approximately 500 km from 
Kinshasa. The city covers 4,332 km² and is bordered by Angola and the Atlantic Ocean. Located 
along the Congo River at coordinates 05°55' S and 12°10' E, Boma faces major energy 
challenges, including frequent power outages that impact daily life and economic activities [17]. 
The growing population relies on various energy sources, and this study aims to analyze the 
region's energy demand. 

2.2 Data collection 

Data collection was a fundamental process for this study. Demographic information was obtained 
from the Boma town hall, providing a solid basis for analyzing energy consumers. In parallel, 
electricity consumption data were collected at the SNEL (National Electricity Company) center on 
October 4, 2024. This data was categorized by tertiary consumers, providing an overview of the 
different energy user groups in the city. 

Table 1. Boma City demographics 

N° Year Populatio
n of Nzadi 

Population 
of 

Kabondo 

Population of 
Kalamu 

Total Household 

1 2014 72 824 79729 105631 258184 43030.7 

2 2015 75 184 80162 106263 261609 43601.5 

3 2016 75 601 80745 107192 263538 43923.0 

4 2017 110204 116312 142211 368727 61454.5 

5 2018 112229 116580 142589 371977 61996.2 

6 2019 112808 117017 143137 372962 62160.3 

7 2020 117425 117195 144061 378681 63113.5 

8 2021 119545 117389 145168 382102 63683.7 

9 2022 120017 119532 146426 385975 64329.2 

10 2023 122887 121062 161592 405541 67590.2 

 
Tables 2, 3 and 4 show the impacts of these groups on the electricity load, providing an overview 
of the energy challenges and needs of municipalities in 2023 data. 
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Table 2. Semi-industrial consumers recorded in the commune of Boma 

N° Semi-industrial Nzadi Kabondo Kalamu Total 

consumers 

1 Welder 9 2 4 15 

2 Sawmill 0 15 7 22 

3 Bakery 3 2 0 5 

4 Cold room 4 10 6 20 

5 Mill 2 26 30 58 

6 Quado 3 10 17 30 

7 Adjuster 0 20 38 58 

8 Cold workshop 2 0 0 2 

9 Radio channel 6 0 0 6 

Total 29 85 102 216 

 
Table 2 lists 216 semi-industrial consumers in Boma, divided into nine categories, with totals for 
each commune. 

Table 3. Tertiary consumers recorded in the commune of Boma 

N° Tertiary 
consumers 

Nzadi Kabondo Kalamu Total 

1 Butcher's shop 0 21 30 51 

2 Hospital and health 
center 

15 9 20 44 

3 School (primary and 
secondary) 

8 15 29 52 

4 University and 
higher institute 

6 2 0 8 

5 Hotel-restaurant 19 10 15 44 

6 Terrace 45 17 36 98 

7 Telecommunications 
sector (Antenna) 

13 6 4 23 
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N° Tertiary 
consumers 

Nzadi Kabondo Kalamu Total 

8 Orphanage 0 0 1 1 

9 Internet cafe 5 1 2 8 

10 Public lighting 0 6 7 13 

11 Church 14 10 15 39 

12 Fuel station 0 1 1 2 

13 Party room 6 2 2 10 

Total 131 100 162 393 

 
Table 3 lists 393 tertiary sector consumers in Boma, classified into thirteen categories, with totals 
for each municipality. 

Table 4. Residential consumers recorded in the commune of Boma 

Residential 
consumers 

Nzadi Kabondo Kalamu Total 

Household 3 672 6 191 8 064 17927 

 
Table 4 lists 17,927 residential consumers in Boma, spread across three municipalities. 

2.3 Data analysis 

The study incorporated a methodology combining quantitative and qualitative techniques. A 
questionnaire was developed to estimate energy consumption among the target groups, including 
residential consumers. The sample size was determined according to Bernoulli's law, taking into 
account the total size of consumers, a margin of error of 5%, and the estimated proportion of the 
population. The equation used to calculate the sample size was carefully formulated to ensure 
the representativeness of the results [1]. The equation for determining the sample size is defined 
as follows: 

𝒏 =
𝒁𝒔𝒄 𝒐𝒓𝒆

𝟐 ∗ 𝒑 ∗ (𝟏 − 𝒑)

[𝟏 + (
𝒁𝒔𝒄 𝒐𝒓𝒆

𝟐 ∗ 𝒑 ∗ (𝟏 − 𝒑)
𝑵 ∗ 𝒎𝟐 )] 𝒎𝟐

 
  

 
Where: n is the sample size; N is the total consumer size; m is the margin of error or threshold 
(5%); p is the estimated proportion of the population that represents the characteristic being 
studied (generally estimated at 50%), and the 95% confidence interval hence: Z_score=1.96. 

Table 5 illustrates the distribution of semi-industrial, tertiary, and residential consumers surveyed 
in the city of Boma, by municipality. 
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Table 5. Distribution of consumers to be surveyed in the Boma by municipality 

 Nzadi Kabondo Kalamu Total 

Number of inhabitants 122887 121062 161592 405541 

Number of residential 
consumes to be surveyed 

77 130 169 376 

Number of semi-industrial 
consumes to be surveyed 

19 54 65 138 

Number of tertiary 
consumes to be surveyed 

65 49 80 194 

 
We need to obtain the details of energy needs through surveys conducted among 376 residential 
consumers, as well as semi-industrial and tertiary consumers. Among the semi-industrial 
consumers, there are 10 welders, 14 sawmills, 3 bakeries, 13 cold rooms, 37 mills, 19 quads, 37 
adjusters, 1 cold workshop, and 4 radio channels. On the tertiary consumers side, we count 25 
bakeries, 21 hospitals and health centers, 25 primary and secondary schools, 4 universities and 
higher institutes, 21 hotel-restaurants, 48 terraces, 11 telephone antennas, 1 orphanage, 4 
internet cafes, 6 public lighting, 19 churches, 2 fuel stations, and 5 party halls. 

After data collection, we conducted a population projection. This step was based on a 
mathematical formula to estimate the projected population using an exponential rate of change. 
This made it possible to assess the increase in population over the years, a key indicator for 
anticipating future energy needs [3]. This allows us to carry out a demographic projection based 
on the extrapolation of trends, translated by: 

𝑷𝒕 = 𝑷𝒐 × 𝒆𝝉𝒕   
 

Where: Pt is the projected population; Po is the starting population; ℮ is the base of natural 
logarithms; t is the number of years and τ is the average rate of change. 

The estimation of energy needs was carried out using an energy load modeling model based on 
a "bottom-up" approach, which focuses on consumption per appliance [18]. 

To illustrate energy consumption, a table was developed, presenting the specifications of the 
devices used in the residential, tertiary, and semi-industrial sectors. This table detailed the power 
in watts (P), the number of units, the coefficient of use without unit (Ku), the duration of use in 
time (Tu), as well as the total energy consumption in kilowatt hours (kWh) for each device. This 
made it possible to visualize consumption habits and identify the most energy-intensive devices 
[19], [20], [21]. We collected data on the use of household, semi-industrial and tertiary appliances, 
representing 23 consumption models and one model is represented in Table 6, during the period 
from October 6, 2024 to December 12, 2024. 
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Table 6. Estimation of household consumption 

City of Boma 

Device P(W) Number Ku Tu P(kWh) 
Lamp 40 10 1 13 1.3 
Iron 1300 1 1 1 1.3 

Water heater 2200 1 1 1 2.2 
Bowl 1500 1 1 0.5 0.75 

Freezer 1620 1 1 22 35.64 
hair dryer 1600 1 1 0.8 0.8 

Fan 60 2 1 5 0.6 
Ceiling light 60 4 1 10 2.4 

Laptop 45 2 1 3 0.27 
Led TV 110 1 1 15 1.65 
Sleet 2620 2 1 8 41.92 

Water fountain 1000 1 1 0.5 0.5 
Charger 5 5 1 0.5 0.0125 
Fridge 250 1 1 4 1 
Radio 600 1 1 2 1.2 
Baffle 500 1 1 2 1 
Stove 2500 1 0.7 4 7 

Total 99.655 

 

In this modeling, a household needs 99.655 kWh per day, and for all households (17927) in the 
city of Boma to be supplied during per year, the need is estimated at 53595455.55 kWh. 

Table 7 gives the different estimated consumptions by consumer category and for the entire city. 

 

Table 7. Estimated consumption by category and across the city 

Ville de Boma 

Consumer Entities Power per month 
(kWh/Year) 

Total  
(kWh/Year) 

Residential Households 53595455.55 53595455.55 
Tertiary Butcher's shop 44235.36 921539.42 

 
 
 
 
 
 
 
 
 
 
 

Hospital and health center 87465.84 
Primary and secondary 

school 
5329.584 

University and higher 
institute 

40125.696 

Hospital-restaurant 472216.8 
Terrace 181515.6 

Orphanage 807.9 
Internet cafe 3275.584 

Public lighting 10140 
Church 3183.252 
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Ville de Boma 
Fuel station 5522.4  

 
 

Antenna 65177.4 
Party room 2544 

Semi-
industrial 

Welder 30845.1 517547.33 
Bakery 39997.785 

Cold room 361530 
Mill 25877.28 

Quado 10707.84 
Adjuster 6514.56 

Cold workshop 496.808 
Radio channel 18155.7 

Sawmill 23422.256 

 

The rate is calculated over the last ten years in Table 1 which allows us to determine the rate of 
increase in the population projection over the last ten years in expression (2): 

𝜏 =
𝑙𝑛 (

𝑃𝑜
𝑃𝑏

)

𝑦
=

𝑙𝑛 (
405541
258184)

9
= 0.05017216 

 

  

2.3.1 Tools and Software Used: PSO Algorithm Combined with Machine Learning Techniques 

In analyzing energy consumption data for the city of Boma, a machine learning approach was 
implemented, primarily using the Python programming language and dedicated libraries. The 
process began by defining the initial data, including population, number of households, and 
consumption rates by sector. This data was carefully organized into a structured format to 
facilitate subsequent analyses. A linear regression model was then chosen as the analysis 
method, due to its ability to establish simple relationships between the independent variables 
(population and demand) and the dependent variable (total energy consumption). To do this, the 
population growth rate was calculated, allowing future values to be projected over a twenty-year 
period, from 2023 to 2053. During this phase, computational loops were set up to estimate energy 
consumption for each year, taking into account projected increases. These calculations were 
integrated into a dictionary, which was then converted into a DataFrame using the Pandas library. 
This data format made it easy to manipulate and analyze the information. Once the data was 
prepared, linear regression was applied. The model was trained with the input data, and the 
coefficients were extracted to interpret the impact of each variable on total consumption. The 
predictions generated by the model were added to the DataFrame, providing a comparison 
between actual and predicted consumption. To present the results visually, graphs were created 
using the Matplotlib library. These graphs showed energy consumption trends over the years, 
highlighting the predictions generated by the model. The regression equation, which summarizes 
the relationships between the variables, was also displayed on the graph for better understanding 
[1], [3], [4], [5]. 

The creation of this network was achieved through particle swarm optimization (PSO). The 
process began with the gathering of the necessary data, followed by the design of the network. 
After this design phase, the weights and biases were initialized. The network was then trained 
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using the PSO algorithm to optimize the model weights. This step reduced the loss function over 
several iterations, which was essential to improve the accuracy of the network [4]. For the data 
measurement and analysis methods, an Excel file containing the energy consumption data was 
first loaded. Once this file was accessible, the input and output data were carefully prepared. The 
weights and biases were initialized with random values for the particles of the PSO algorithm, 
ensuring diversity in training. The network training consisted of running the algorithm to refine the 
weights and reduce the loss function [3]. Once training was completed, the network performance 
was validated. This included calculating the correlation coefficient as well as other statistical 
errors, such as the mean absolute error (MAE) and the root mean square error (RMSE). In 
addition, p-values were calculated to confirm the robustness of the results, as highlighted [5]. This 
structured approach allows for a clear and consistent follow-up of the process of assessing and 
analyzing energy needs in the municipalities concerned [1]. 

 

Figure 1. Typical architectural model of an artificial neural network 

At the end of the process, we used the network to make final predictions on the input data, while 
taking into account potential biases. Each step of this methodology was crucial to build an efficient 
regression model based on the data provided, thus ensuring a rigorous and methodological 
approach in our analysis. Statistical analysis using R software, particularly through methods such 
as the Pearson correlation coefficient, was instrumental in validating the results of the predictive 
models, allowing us to assess the accuracy of the predictions and ensure the reliability of the 
applied algorithms [7], [9], [11]. In addition, we used the Student t-test to compare the means of 
the values calculated and predicted by the PASO algorithm. This method allowed us to assess 
whether the differences observed between the predicted and actual values were statistically 
significant, thus reinforcing the validity of our results. 

In the BALU scenario, it is assumed that electricity consumption at the end of the period will 
continue as it was in the previous year. This means that there are no changes in development 
policies or forecasts. Basically, the projections remain constant and are not influenced by political 
decisions [22]. 

Results and Discussion 

The analysis of Boma's energy consumption, performed using the sklearn. linear model linear 
regression model, reveals several important insights into the dynamics of energy demand in this 
region. By examining the results, including the mean absolute error (MEA) and the root mean 
squared error (RMSE), we can draw significant conclusions about the model's accuracy and 

efficiency. The MEA, which is 2.40 × 10⁻⁸, indicates that, on average, the absolute error between 
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actual total energy consumption and that predicted by the model is extremely low. This suggests 
that the model is highly accurate in its predictions, which is crucial for long-term energy planning. 
Such a low MEA means that decision-makers can have confidence in the estimates provided, 
allowing them to better plan for future energy needs. Furthermore, the RMSE of 2.93 × 10⁻⁸ 
reinforces this interpretation. The RMSE measures the difference between predicted and actual 
values, taking into account the error variance. A very low RMSE also indicates that the model's 
predictions are not only close to the actual values but also consistent throughout the entire period 
studied. This means that the model is reliable for future projections. Analyzing the energy 
consumption data for each year, we observe a general upward trend in total consumption. For 
example, the total consumption forecast for 2023 is approximately 5.50 × 10⁷ kWh, and it gradually 
increases to approximately 2.48 × 10⁸ kWh by 2053 Table 8. This trend is consistent with the 
population and demand growth rates incorporated into the model. The model also allowed for a 
comparison of actual consumption values with predicted values for each year. The results show 
that the model predictions closely align with actual consumption, validating the model structure 
and the selected variables. This demonstrates the importance of population and demand as key 
predictors in energy consumption analysis. The use of linear regression to model energy 
consumption in Boma yielded very promising results. The low MEA and RMSE values indicate 
good prediction accuracy, and the observed trends provide essential information for future energy 
planning. These results can help decision-makers design appropriate strategies to meet the 
growing energy demand in the city. 

Table 8. Energy Demand Prediction 

Year Total_Consumption Predicted_Total_Consumption 

2023 55034540 55034540 

2024 57866190 57866190 

2025 60843520 60843520 

2026 63974050 63974050 

2027 67265650 67265650 

2028 70726610 70726610 

2029 74365640 74365640 

2030 78191910 78191910 

2031 82215050 82215050 

2032 86445180 86445180 

2033 9.0892970 90892970 

2034 95569600 95569600 

2035 10048690 100486900 

2036 105657100 105657100 

2037 111093400 111093400 

2038 116809400 116809400 

2039 122819500 122819500 

2040 129138800 129138800 

2041 135783300 135783300 
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Year Total_Consumption Predicted_Total_Consumption 

2042 142769600 142769600 

2043 150115400 150115400 

2044 157839100 157839100 

2045 165960300 165960300 

2046 174499300 174499300 

2047 183477700 183477700 

2048 192918000 192918000 

2049 202844000 202844000 

2050 213280700 213280700 

2051 224254500 224254500 

2052 235792900 235792900 

2053 247924900 247924900 

 
The equation for predicting total energy consumption for the city of Boma is: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = −5.96 × 10−8 + 132.04 × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 22.01 × 𝐷𝑒𝑚𝑎𝑛𝑑        

 
Where Intercept (-5.96×10-8): This term represents the baseline energy consumption when both 
population and demand are equal to zero. In a practical context, this intercept may not have any 
tangible meaning, as it is extremely small. This indicates that when the variables are zero, 
consumption is close to zero. Population Coefficient (132.04): This coefficient shows the impact 
of population increase on total energy consumption. For each additional person in the population, 
total energy consumption increases by 132.04 kWh. This means that a growing population results 
in a proportional energy demand. Demand Coefficient (22.01): This coefficient represents the 
effect of demand on total energy consumption. For each additional unit of demand (which could 
represent a household or another demand indicator), total consumption increases by 22.01 kWh. 
This shows that even a small increase in demand has an impact on total consumption. 

The equation shows how a city's total energy consumption changes based on two key factors: 
population and demand (three sectors: household, semi-industrial, and tertiary). The impact of 
population is much more significant than that of demand, as shown by the higher coefficient for 
population. This suggests that population growth is the main driver of energy consumption. 

Figure 2 presents the energy demand forecast for the city of Boma over the period 2023 to 2053. 
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Figure 2. Regression model of the Energy Demand Prediction 

In this figure 2, the x-axis represents the years, ranging from 2023 to 2053, while the y-axis shows 
the total energy consumption in kilowatt-hours (kWh). The blue dots represent the actual total 
energy consumption, while the orange dashed line shows the total consumption predicted by the 
linear regression model. This visualization allows for a direct comparison of actual values with the 
model's predictions. Looking at the curve, there is a general upward trend in energy consumption, 
both in actual and predicted values. This reflects the continued increase in energy demand, likely 
due to population and household growth in the region. The proximity of the blue dots (actual 
values) to the orange line (predicted values) demonstrates the model's accuracy. A low 
divergence between the two indicates that the forecasts are reliable, which is essential for energy 
planning. The legend embedded in the figure provides additional information about the regression 
equation that was used to generate the predictions. This equation shows how total energy 
consumption is influenced by population and demand, illustrating the main factors that determine 
the city's energy needs. This figure is a powerful visual tool for understanding energy consumption 
trends and evaluating the effectiveness of the forecasting model. It provides critical information 
for decision-makers seeking to manage energy demand in a growing environment. 

The actual values represent the observed energy consumption, constituting an essential 
reference for evaluating the accuracy of the model. By comparing them with the predicted values, 
the effectiveness of the method used can be measured. The predicted values from 81,208,230 at 
2023 to 2,646,700 at 2053, on the other hand, are the estimates provided by the model after 
applying the PSO algorithm, crucial for making informed decisions in energy management. The 
analysis of the errors, which represent the difference between the predicted and actual values of 
, allows us to identify weaknesses in the model and make necessary improvements. In addition, 
the bias values vary, with the results ranging from about 26,173,680 at 2023 to about 1,668,2540 
at 2053. The analysis of the biases of the predictions showed that they were often higher than the 
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actual values. A key point to emphasize is that forecast bias should be higher to optimize 
electricity demand, thus ensuring sufficient supply capacity to meet demand.Figure 3 illustrates 
the relationship between predicted and actual energy consumption values. 

 

Figure 3. Regression model of the PSO algorithm 

Meanwhile, the correlation coefficient revealed an impressive value of 9998.3×10-4 in Figure 3, 
indicating a very high agreement between actual and predicted values. This accuracy is essential 
for making informed decisions regarding energy consumption management, as it increases 
confidence in the predictions provided by the model. 

In the process of optimizing the energy consumption prediction performance, a significant 
improvement in fitness was observed. Over the iterations of the Particle Swarm Optimization 
(PSO) algorithm, the fitness values significantly decreased from 2811872071120.951 to 
1855323187379.524. This reduction indicates a convergence towards optimal solutions, thus 
demonstrating the effectiveness of the PSO algorithm in adjusting the model parameters and 
decreasing the prediction error. Figure 3 shows the deviations between the predicted values and 
the actual values obtained by the PASO algorithm. 

In Figure 4, however, although the predictions are generally close to the actual values, the 
prediction errors, measured by the mean absolute error (MAE), are 23440773.399 and the root 
mean square error (RMSE) is 23491676.483, respectively. These results indicate that there is still 
a certain margin of error, highlighting the importance of taking these values into account when 
applying the model, as they can have an impact on energy planning. The integration of the PSO 
algorithm has significantly improved the energy consumption prediction performance. Each result 
obtained underlines the importance of optimization and rigorous evaluation of models to ensure 
accurate and reliable predictions, essential for efficient energy management. 
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Figure 4. Distribution of prediction errors 

The Pearson correlation analysis of the results, performed with a threshold of 5%, compares the 
values calculated and predicted by the PSO algorithm. It shows that the correlation between the 
actual energy consumption values and those predicted by the PSO algorithm is extremely high, 
reaching 9998.321 * 10-4. This value indicates an almost perfect agreement, suggesting that the 
algorithm's predictions follow the observed values very closely. Such precision testifies to the 
effectiveness of the algorithm in modeling energy demand. Examining the statistical significance 
of this correlation, we find that the calculated t is 293.87, with a p-value lower than 2.2* 10-16. 
These results allow us to conclude that the observed correlation is statistically significant, thus 
reinforcing the idea that the PSO algorithm is effective in predicting energy demand. In addition, 
the 95% confidence interval, which lies between 9996.479* 10-4 and 9999. 200* 10-4, provides us 
with additional assurance about the robustness of the correlation. This means that we are very 
confident that the true correlation in the population is also very high, which reinforces the reliability 
of the predictions made by the algorithm. The implications of this high correlation for energy 
management are significant. It suggests that the PSO algorithm can be considered a reliable tool 
for energy demand management. This allows decision-makers to make informed decisions based 
on accurate forecasts, which is essential in a context where resource optimization is paramount. 
Furthermore, the ability of the PSO algorithm to react quickly and accurately to fluctuations in 
energy demand is crucial. This responsiveness is essential to optimize resource management 
and ensure that supply is always matched to demand. Finally, with a very high correlation and 
clear statistical significance, energy managers can have confidence in the forecasts provided by 
the PSO algorithm. This facilitates better energy planning and reinforces the ability to anticipate 
future needs. The PSO algorithm demonstrates exceptional performance in predicting energy 
demand, supported by significant statistical results and strong correlation with actual values. 

Student's t-tests were performed with a threshold of 5% to compare the values calculated and 
predicted by the PSO algorithm. Analysis of the results reveals that the means of the actual energy 
consumption values and those predicted by the PSO algorithm are 128,930,829 and 152,371,605, 
respectively. This comparison highlights that, on average, the algorithm predicts higher energy 
consumption than observed, suggesting a bias towards higher predictions. To assess the 
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significance of this difference, a Student t-test was performed, producing a t of -1.617. This result 
indicates that there is a slight difference between the two means. The negative value of the t 
suggests that the algorithm's predictions are above the actual values, which could be of concern 
to energy managers. However, when we examine the statistical significance of this difference, we 
note that the p-value is 0.111, which is higher than the conventional threshold of 0.05. This 
indicates that the observed difference between the means is not statistically significant. In other 
words, we lack sufficient evidence to conclude that there is a real difference between the values 
predicted by the algorithm and the observed values. Continuing our analysis, we consider the 
95% confidence interval, which extends from -52,448,089 to 5,566,539. This interval shows us 
that we are uncertain about the direction of the difference. Indeed, since this interval includes both 
negative and positive values, it is possible that the predictions are either higher or lower than the 
actual values. The implications of these results for energy management are significant. Since the 
difference between the predictions and the actual values is not significant, this means that the 
PASO algorithm, although it can provide higher predictions, does not deviate alarmingly from 
reality. This situation can be interpreted as an indicator that the algorithm is reasonably reliable 
for energy demand management, even considering the bias observed in the forecasts. 

The assessment of the accuracy of an energy consumption prediction model is mainly based on 
the comparison between the actual values and those provided by the PSO algorithm. The analysis 
of energy consumption in Boma, conducted using a linear regression model, produced very 
promising results. The mean absolute errors (MAE) and root mean square errors (RMSE) were 
2.40 × 10 − 8 and 2.93 × 10 − 8, respectively. These values indicate that the model's predictions 
are extremely accurate, increasing decision-makers' confidence in the estimates. This is essential 
for long-term energy planning, as confirmed by [1], who emphasize the importance of reliable 
models for energy demand management. The data show a general upward trend in total energy 
consumption, from. This trend is consistent with population and demand growth, as observed in 
previous studies [3]. These results highlight the need to adapt energy strategies in the face of 
continued increases in demand. The model predictions show good agreement with actual 
consumption values, thus validating the model structure and the selected variables. This is 
supported by [4], who observed similar results in his research on algorithm optimization. This 
validation is crucial for establishing demand management strategies. The equation for predicting 
total consumption is given by Total Consumption = -5.96 × 10^(-8) + 132.04 × Population + 22.01 
× Demand. Although very small, it indicates that consumption is close to zero when both 
population and demand are zero. Population Coefficient: For each additional person, consumption 
increases by 132.04 kWh, highlighting the significant impact of population growth. Demand 
Coefficient: Each additional unit of demand increases consumption by 22.01 kWh, showing that 
even small increases in demand can have significant effects. The visual comparison between the 
actual values (blue dots) and the predicted values (orange line) shows a close relationship, which 
demonstrates the model's accuracy. This visualization is essential for decision-makers, as [10] 
point out, as it provides an intuitive understanding of consumption trends. The results indicate 
that population growth is the main driver of energy consumption, which is corroborated by the 
work of [12]. Decision-makers should therefore focus their planning efforts on the impacts of 
demographics on energy demand to ensure adequate supplies in the future. The actual values, 
considered as an essential reference, allow measuring the effectiveness of the prediction method. 
In this regard, the work of [1] confirms the importance of using real data to validate predictive 
models. Moreover,[3] supports this approach by stating that the direct comparison of actual values 
with predicted values is crucial to adjust the model parameters in real time. Analyzing the 
prediction errors, it is found that the mean absolute error (MAE) is 23,440,773.399 and the root 
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mean square error (RMSE) is 23,491,676.483. These figures reveal a significant margin of error 
that highlights the need for improvements in the model. Points out that even advanced algorithms 
such as PSO can have errors [4], [5] suggest implementing complementary methods to reduce 
these errors, reinforcing the idea that optimization should be a continuous process. Analysis of 
forecast biases shows that they vary between 26,173,680 and 16,682,540, indicating that 
forecasts are often higher than actual values. In this sense, [10]note that a positive bias could be 
beneficial to ensure adequate supply capacity, while [11] argue that this bias can also signal an 
underestimation of future needs. A crucial point in this assessment is the correlation coefficient, 
which stands at 0.99983, indicating a high agreement between actual and predicted values. Point 
out that such correlation levels increase confidence in predictive models [1], [23] argue that high 
correlations are essential for making informed decisions in energy management. Furthermore, a 
significant improvement in fitness was observed, with fitness values decreasing from 
2,811,872,071,120.951 to 1,855,323,187,379.524. Corroborate these results by stating that PSO 
is effective in optimizing model performance [24], [25] add that this convergence towards optimal 
solutions is a strong indicator of the algorithm's effectiveness. Statistically, the calculated t is 
293.87, with a p-value less than 2.2e-16, demonstrating a statistically significant correlation. Point 
out that such p-values enhance the robustness of the results [6], [26] encourage the use of such 
analyses to ensure the reliability of forecasts. By examining the means of the actual and predicted 
values, respectively 128,930,829 and 152,371,605, it is evident that there is a bias towards higher 
forecasts. This comparison indicates that, on average, the algorithm predicts higher energy 
consumption than observed. Point out that while biases in forecasts can be a cause for concern, 
they do not necessarily indicate model failure [27]. Recommend monitoring these biases in order 
to adjust forecasts appropriately [28]. Finally, applying a Student T-test reveals a t of -1.6165 with 
a p-value of 0.1112, indicating that the difference between the means is not statistically significant.  
Specify that p-values greater than 0.05 do not allow one to conclude that there is a significant 
difference [29], [30] add that this situation may indicate reasonable reliability of the forecasts. 

The PSO algorithm demonstrates exceptional performance in predicting energy demand. 
Although biases and errors remain, the high correlation and statistical significance of the results 
strengthen confidence in its use for energy management. Further research results confirm the 
need for continuous optimization and forecast adjustment, which underlines the importance of a 
rigorous approach in energy consumption modeling. 

To develop more sophisticated forecasting models and improve the accuracy of energy forecasts, 
it is essential to integrate machine learning techniques. This approach begins with the 
establishment of a continuous data collection system, allowing monitoring of energy consumption 
trends over an extended period. This system will provide valuable data to feed the models [4]. In 
parallel, it is necessary to study in depth the energy consumption behaviors of different groups, 
including residential, semi-industrial, and tertiary. This analysis will allow for better understanding 
of the variations in demand according to the specific characteristics of each group. It will also be 
crucial to analyze the impact of local and national energy policies on energy consumption, in order 
to assess their influence on the efficiency of forecasts [12]. Another important dimension to 
explore is the integration of renewable energy sources. Understanding how these sources can 
affect consumption forecasts and energy demand management is fundamental to adapting 
models accordingly. In this context, it is also necessary to assess the existing energy 
infrastructure in Boma in order to identify the improvements needed to support more efficient 
energy management [10]. The application of advanced algorithms should also be considered. 
Testing other optimization algorithms, such as genetic algorithms, will allow comparing their 
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efficiency with that of the PASO algorithm, thus providing a broader perspective on best practices 
in energy forecasting [3]. Furthermore, it is essential to study how external factors, such as climate 
and economic conditions, influence energy consumption and forecasts in order to refine models 
by taking these variables into account [11]. Finally, to ensure successful adoption of new energy 
practices, it is important to promote training programs. These programs will raise awareness 
among the population about the importance of energy saving and sustainable practices. In 
addition, fostering collaborations between researchers, policymakers, and industry stakeholders 
will help develop integrated solutions for energy management, thereby strengthening the 
effectiveness of forecasts and interventions [28]. 

Conclusions 

The conclusion of this study highlights the critical importance of optimizing energy forecasts for 
the municipality of Boma, in the Democratic Republic of Congo, using the Particle Swarm 
Optimization (PSO) algorithm. The results obtained reveal an impressive correlation of 0.999 
between actual and predicted values, highlighting the remarkable accuracy of the developed 
model. This achievement is comparable to other studies that have also reported high energy 
forecasting results. However, our research stands out for its integrated approach, combining 
qualitative and quantitative data specific to Boma. Despite this, biases were identified in our 
forecasts, including a tendency to overestimate energy consumption. This finding highlights the 
need for more rigorous data collection and methodological adjustments to challenges similar to 
those encountered in other contexts, where forecasts are often complicated by incomplete data. 
Our research expands on the existing literature by demonstrating the effectiveness of the PSO 
algorithm in a specific context. It also paves the way for more sophisticated forecasting models 
by integrating machine learning techniques and behavioral analyses. Several recommendations 
emerge in this regard. It would be beneficial to integrate more historical data and gather 
information on consumption behaviors to improve forecast accuracy. Furthermore, testing 
alternative algorithms, such as genetic algorithms, could allow for a comparison of their 
effectiveness with that of PSO and the identification of best practices. It would also be relevant to 
assess the impact of integrating renewable energy sources on energy demand and forecasts in 
order to adapt models accordingly. Examining local and national energy consumption policies 
could also provide valuable insights to optimize energy management. Finally, developing 
awareness programs on energy conservation and sustainable practices could encourage 
behavioral changes among the population, thus enhancing the effectiveness of forecasts. 
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